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Table S1 | CMIP5 CGCMs used in this study. ‘X’ marks indicate that a particular CGCM run was 

incorporated into the ensemble mean (representing the forced signal) in the given experiment. Also shown 

are the hemispheric-to-global variability scaling factors that were applied to the low frequency component 

of unforced hemispheric surface temperature reconstructions (Fig 1c) to convert them to representations 

of GMT variability (Fig. 1d). One preindustrial control run was used for each CGCM to obtain the 

hemisphere to global scaling factor.  

 

Model Historical RCP 4.5 RCP 6.0 RCP 8.5

Preindustrial 

Control NH-

to-Global 

Scaling 

Factor

Preindustrial 

Control SH-to-

Global Scaling 

Factor

ACCESS1-0 X X 0.60 2.26

ACCESS1-3 X X 0.73 2.15

bcc-csm1-1 X X X X 1.12 0.67

bcc-csm1-1-m X X X 2.00 0.60

BNU-ESM X X

CanESM2 X X 0.62 0.73

CCSM4 X X X X 0.66 0.75

CESM1-BGC X X 0.99 0.78

CESM1-CAM5 X X X X 0.78 0.86

CESM1-FASTCHEM 0.58 0.45

CESM1-WACCM 0.74 0.99

CMCC-CESM 0.86 1.06

CMCC-CM X X

CMCC-CMS X X 0.71 0.57

CNRM-CM5 X X 0.64 0.56

CSIRO-Mk3-6-0 X X X X 0.62 0.97

EC-EARTH X X

FGOALS-g2 X X 0.77 0.54

FGOALS-s2

FIO-ESM X X X X

GFDL-CM3 X X X X 0.90 0.65

GFDL-ESM2G X X X X 0.66 0.88

GFDL-ESM2M X X X X 0.70 1.27

GISS-E2-H X X X X 0.87 0.53

GISS-E2-H_p3 0.86 0.84

GISS-E2-H-CC X

GISS-E2-R X X X X 0.91 0.86

GISS-E2-R_p2 0.63 1.44

GISS-E2-R-CC X

HadGEM2-AO X X X X

HadGEM2-CC X X 0.85 0.88

HadGEM2-ES X X X X

inmcm4 X X 0.56 1.10

IPSL-CM5A-LR X X X X 0.73 1.06

IPSL-CM5A-MR X X X X 0.64 0.88

IPSL-CM5B-LR X X 0.66 1.13

MIROC-ESM X X X X 0.89 1.15

MIROC-ESM-CHEM X X X X 0.78 1.63

MIROC5 X X X X 0.64 1.05

MPI-ESM-LR X X 0.78 1.03

MPI-ESM-MR X X 0.66 0.93

MPI-ESM-P 0.72 1.12

MRI-CGCM3 X X X X 0.71 0.82

NorESM1-M X X X X 0.78 0.98

NorESM1-ME X X X X 0.73 1.30
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Figure S1 | CGCM produced forced global warming signal (black line) and the CGCM produced 5-

95%, 2.5-97.5% and 0.5-99.5% EUNs (grey shading) of GMT anomaly values from the CMIP5 

multi-model ensemble. The forced signal follows the ‘historical’ experiment through 2005 and the RCP 

6.0 emissions scenario from 2005-2030. The GISTEMP observations (as well as their 2σ uncertainty) are 

shown in yellow.  
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Figure S2 | Removal of the forced variability from the instrumental record from 1880-2011 and the 

decomposition of the unforced variability into its Intrinsic Mode Functions (IMFs). (a), External 

radiative forcing estimates from 1880-2011, updated from Hansen, et al. 
1
. (b), Instrumental (GISTEMP) 

global mean surface air temperature from 1880-2011. (c), Unforced component of variability over the 

time period (Uinst) which was obtained after Multiple Linear Regression was used to remove the forced 

variability from the instrumental record [Equation 3 and 1]. (d), Intrinsic Mode Functions (IMFs) that 

result from Empirical Mode Decomposition
2
 applied to the Uinst time series. Only those IMFs with a mean 

wavelength of 15 years or less are used in the creation of the ESRUN (red box) whereas the ESRUN 

bases its lower frequency variability off of reconstructions of surface temperature from the years 1000-

1850 (Fig. 1 and S3). 
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Figure S3 | Combining low frequency IMFs from reconstructions with high frequency IMFs 

from the instrumental record to create a stochastic realization of unforced GMT noise. (a), 

Intrinsic Mode Functions (IMFs) that result from Empirical Mode Decomposition
2
 applied to a particular 

Urecon time series (b), IMFs that result from Empirical Mode Decomposition applied to the Uinst time series 

(also shown in Supplementary Fig. S2d). (c), High frequency IMFs from the instrumental record lined up 

with low frequency IMFs from the reconstructed record. At this point the low frequency variability has 

been converted to a representation of GMT (step 3, Methods). (d), AR(2) simulated IMFs that attempt to 

emulate the approximate magnitude and frequency, but not necessarily the phase, of the corresponding 

IMFs in column c. 
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Figure S4 | Hemispheric and global variability (standard deviation) for the CMIP5 unforced 

preindustrial control runs (a), Relationship between the magnitude of low frequency variability of 

Northern Hemispheric mean surface temperature and the magnitude of GMT variability. (b), Same as (a) 

but comparing Southern Hemispheric variability to GMT variability. In both cases there is a statistically 

significant correlation (P values shown in the panels) indicating that information on unforced GMT 

variability can be gleaned from hemisphere mean surface temperature variability albeit with substantial 

uncertainty. The ratio of the y-value to the x-value, for each model, is the scaling factor listed in Table S1. 
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Test of methodology  

Because the methodology for constructing the ESRUN has not been implemented previously, it was necessary 

to subject some of the fundamental concepts to basic tests in order to determine if the method was sound. For 

this task, a single CGCM was utilized (CSIRO-Mk3-6-0) because it had a large number of ensemble members 

(10) for the ‘historical’ experiment. We did not use the ‘last millennium’ experiment because no CGCMs had a 

large number of ensemble members for this experiment. For the following three demonstrations of concept, we 

treat the output of this CGCM as the "true" climate system. 

1. Conserving physical modes of unforced variability. The ability of EMD (and subsequent AR(2) 

modeling of IMFs) to conserve physical modes of unforced variability on a variety of time scales was 

tested. This was done by simply decomposing CSIRO-MK3-6-0's unforced preindustrial control run 

with EMD, simulating the IMFs with AR(2) models, and summing the AR(2) simulations to create a 

stochastic realization of unforced GMT variability. This process was performed 100 times and the 

resulting synthetic time series were compared to the original unforced control run that they were 

attempting to emulate (considered the “true” unforced GMT variability in this experiment). The 

synthetic unforced GMT time series produced in this manner had a similar standard deviation (Fig. 

S5a), mean power spectra (Fig. S5b), and mean autocorrelation function (Fig. S5c) compared to the 

true unforced variability produced by the control run. This result indicates that the physical modes of 

variability in a CGCM's control run were conserved by the described methodology. 

2.   Ability of Multiple Linear Regression to remove the forced signal. It has been suggested that 

external forcings may excite and/or modulate modes of unforced variability 
3-5

. This might mean that 

GMT could have a nonlinear response to external radiative forcings. Therefore, it was necessary to 

test whether it was reasonable to use Multiple Linear Regression to remove the forced signal from 

temperature datasets. This was done by utilizing 10 forced runs of CSIRO-MK3-6-0 over the period 

from 1880-2011 (historically forced from 1850-2005 and forced with RCP 6 from 2006 to 2011). In 

this experiment, the observed temperature was represented by GMT realizations associated with 

individual forced ensemble members of CSIRO-MK3-6-0 and the external radiative forcings were the 

same as those shown in Fig. S2. Application of Multiple Linear Regression to each of the ensemble 

members then produced 10 unforced GMT time series that were used to produce 100 synthetic 

unforced GMT realizations (10 for each) according to the ESRUN methodology. This ensemble of 

100 synthetic unforced GMT realizations was compared to the “true” unforced GMT variability of the 

CGCM’s unforced control run. Note that the synthetic unforced GMT realizations produced in this 

experiment were blind to the “true” unforced variability of the CGCMs control run that they are 

attempting to emulate. These 100 synthetic unforced GMT time series had a similar standard deviation 

(Fig. S5d) mean power spectra (Fig. S5e), and mean autocorrelation function (Fig. S5f) compared to 

the “true” unforced variability produced by the control run. This similarity indicates that Multiple 

Linear Regression is able to remove the forced component of variability from the record while leaving 

the unforced variability behind.  

3. Conversion of unforced hemispheric temperature variation to GMT variation. The conversion 

from unforced hemispheric mean surface temperature variability to unforced GMT variability was 

also tested. This test was conducted in a similar manner to experiment 2. In this experiment, however, 

the observed GMT was represented by Northern Hemisphere mean surface temperature realizations 

associated with individual forced ensemble members of CSIRO-MK3-6-0. Application of Multiple 

Linear Regression then produced 10 unforced time series that were again used to produce 100 

synthetic unforced realizations (10 for each) using the ESRUN methodology. In this case, however, 

the IMFs were converted from hemispheric variability to GMT variability with a conversion factor of 
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0.77 (the mean Northern Hemisphere-to-GMT conversion factor in the CMIP5 ensemble (Table S1)). 

These 100 synthetic unforced GMT realizations were then compared to the “true” unforced GMT 

variability of the unforced control run. Note that, as in experiment 2, the synthetic unforced GMT 

realizations produced in this experiment were blind to the “true” unforced variability of the CGCMs 

unforced control run that they are attempting to emulate. The 100 synthetic unforced GMT time series 

produced in this manner had a similar standard deviation (Fig. S5g), mean power spectra (Fig. S5h), 

and mean autocorrelation function (Fig. S5i) compared to the “true” unforced GMT variability 

produced by the control run. This similarity indicates that the conversion from Hemispheric to GMT 

unforced variability may be achieved through a simple scaling factor. 

 

Figure S5 | Time series, multi-taper power spectra and autocorrelation function comparisons associated 

with methodological tests described in the text. Top row, Comparison of CSIRO-MK3-6-0 unforced control 

run (True U) and the unforced GMT variability produced from EMD and IMF AR(2) simulation of the same 

CSIRO-MK3-6-0 unforced control run (Synthetic U). Middle, Comparison of CSIRO-MK3-6-0 control run 

(True U) and synthetic unforced GMT produced from the methodology applied to 10 GMT simulations 

associated with forced runs of CSIRO-MK3-6-0 over the period 1880–2011. Bottom, Comparison of CSIRO-

MK3-6-0 control run (True U) and synthetic unforced GMT produced from the methodology applied to 10 

Northern Hemispheric simulations associated with forced runs of CSIRO-MK3-6-0 over the period 1880–

2011. In each time series comparison (left column), a single synthetic unforced GMT realization is shown that 

had a standard deviation representative of the average. The time series have been shifted on the vertical axis so 

that they may be visually compared.   
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The Division between High and Low Frequency Variability 

Figure S6 compares the power spectral density of unforced GMT estimated from the instrumental record 

and unforced GMT estimated from the reconstructions. Reconstructions where not used for the simulation 

of high frequency variability in the ESRUN because the instrumental record is of sufficient length to 

characterize such variability and because many reconstructions obviously underestimate high frequency 

variability (probably to due temporal resolution limitations of several proxies). On the other hand, it is 

valuable to estimate low frequency variability using the reconstructions because they are of longer length 

than the instrumental record and they are from a time period characterized by weaker external forcing.  

We chose 15 years as the division between high and low frequency variability because this serves as a 

natural division between ENSO-like variability (which has a characteristic timescale of ~3-7 years) and 

slower moving modes of variability such as the Atlantic Multidecadal Oscillation and Pacific Decadal 

Oscillation which have timescales of multiple decades
6
. Also the 15-year division allowed the first three 

IMFs from the instrumental record (Fig. S2d) to be included in creation of the ESRUN. The timescales of 

variability for these first three IMFs indicate that they likely arose from unforced internal dynamics. On 

the contrary, the 4
th
 instrumental IMF (Fig. S2d) cools from the late 1800s to ~1910 and then warms from 

~1910 to ~1940. It is possible that this variability in particular is due to external forcings
7
 that have not 

been completely removed by the Multiple Linear Regression procedure. Because of ambiguity between 

forced and unforced variability in the instrumental record at this and longer timescales, it is valuable to 

use additional estimates of low frequency variability provided by the reconstructions.  

Figures S7 and S8 show the primary results of the manuscript when the high/low frequency division is 

assigned to be 35 years which allows the first four IMFs from the instrumental record (Fig. S2d) to be 

included in the ESRUN. Figures S7 and S8 indicate that the primary results are similar for both cutoff 

frequencies but that there is slightly less energetic low frequency variability in the ESRUN when the 

cutoff frequency is 35 years. This may be because some of the low frequency variability in the 

instrumental record has been mistaken for forced variability and the radiative forcings have been 

implicitly over-fit to the observed GMT at the 15-35 year timescale.  
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Figure S6 | Power spectrum of unforced GMT from the instrumental record compared to the 

15,120 unforced GMT estimates from the reconstructions. The single instrumental power spectrum is 

shown in red while the individual reconstructed power spectra are shown in black. The mean across all 

reconstructions is shown in green. The power spectra were calculated using a multi-taper method with 

adaptive weighing. Only those timescales where instrumental and reconstructed variability overlap are 

shown. The vertical dashed line delineates where the division is made between high and low frequency 

variability: the ESRUN uses the instrumental record for high frequency variability (left of the blue dashed 

line) and uses the reconstructed records for low frequency variability (right of the blue dashed line).  
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Figure S7 | Same as Fig. 2 but with low frequency variability defined as IMFs with an average 

wavelength of 35 years or greater.  

 

Figure S8 | Same as Fig. 3 but with low frequency variability defined as IMFs with an average 

wavelength of 35 years or greater. 
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Sensitivity of Results to AR Order Assignment 

Figures S9 and S10 show the main results of the manuscript when Bayesian Information Criterion (BIC)
8
 

was used at Step 4 (Fig. 4) to assign the autoregressive model order with the best balance between 

goodness-of-fit and model complexity. In this case, the model order was selected [among AR(1), 

AR(2),…,AR(10)] that minimized the BIC. Comparison of Figs. S9 and S10 with Figs. 2 and 3 

respectively, indicates that the primary results of the manuscript are very similar when BIC is used to 

assign AR model order and when the model order is pre-assigned to be AR(2).  

Figs. S11 and S12 also show very similar results when model order is pre-assigned to be AR(7). This is in 

contrast to Figs. S13 and S14 where model order was pre-assigned to be AR(1) and there is noticeably 

less low frequency variability present in the ESRUN.  

Overall, these results indicate that AR(1) models are unable to simulate some low frequency variability 

present in the unforced GMT time series. However, results are very similar when AR(2), AR(7) or AR(X) 

[where X is assigned from 1 to 10 using BIC] models are used to create the ESRUN. Therefore, it appears 

that only marginal improvements are achieved by increasing model order past AR(2) and thus we present 

the AR(2) results in the main text of the manuscript. The ability of AR(2) models to simulate the unforced 

GMT time series is also illustrated in Figs. S3 and S5. 
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Figure S9 | Same as Fig. 2 but with AR model order assigned using BIC. Possible model orders ranged 

from AR(1) to AR(10) for each IMF.  

 

Figure S10 | Same as Fig. 3 but with AR model order assigned using BIC. Possible orders ranged from 

AR(1) to AR(10) for each IMF. 
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Figure S11 | Same as Fig. 2 but with AR(7) models used to simulate the IMFs 

 

Figure S12 | Same as Fig. 3 but with AR(7) models used to simulate the IMFs 
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Figure S13 | Same as Fig. 2 but with AR(1) models used to simulate the IMFs 

 

Figure S14 | Same as Fig. 3 but with AR(1) models used to simulate the IMFs 
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Reconstruction information 

The following is information on the surface temperature reconstructions used in this study. The 

information below comes directly from Wahl, et al. 
9
 

Ammann and Wahl 
10

 

TITLE: Northern Hemisphere Average Annual Temperature Reconstruction 

DESCRIPTION_SUMMARY: Uses multiple proxy types, input into inverse regression-truncated 

EOF climate field reconstruction spanning entire globe at incomplete 5x5 deg grid.  Only N. 

Hemisphere average is reported here. 

Briffa, et al. 
11

 

TITLE: Northern Hemisphere Temperature Reconstructions 

DESCRIPTION_SUMMARY: Derived from means of 383 maximum latewood density 

chronologies from the northern Boreal forest. 

Crowley 
12

 

TITLE: Northern Hemisphere Temperature Reconstruction 

DESCRIPTION_SUMMARY: Proxies used include tree-rings, pollen, oxygen isotopes, ice core, 

phenological records, historical records. Modification of reconstruction from Crowley, T.J., and 

T. S. Lowery. 2000. How Warm was the Medieval Warm Period. Ambio 29:51-54. 

D'Arrigo, et al. 
13

  

A)  

TITLE: Northern Hemisphere Tree-Ring-Based Temperature Reconstruction: Standard 

DESCRIPTION_SUMMARY: Standard Reconstruction (negative-exponential or straightline 

curve fits). Tree-ring based reconstruction from 66 high elevation and latitudinal treeline North 

American and Eurasian sites.      

B)  

TITLE: Northern Hemisphere Tree-Ring-Based Temperature Reconstruction: Regional Curve 

Standardization 

CITATION: D'Arrigo, R., R. Wilson, and G. Jacoby.  2006.  On the long-term context for late 

twentieth century warming.  Journal of Geophysical Research 111:D03103. DOI: 

10.1029/2005JD006352. 

Huang 
14

  

TITLE: Integrated Northern Hemisphere Surface Temperature Reconstruction 
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DESCRIPTION_SUMMARY: Reconstruction based on borehole temperatures, the 20th century 

meteorological record, and multi-proxy paleoclimatic records.   

Jones, et al. 
15

  

A)  

TITLE: Millennial Temperature Reconstructions: Northern Hemisphere 

DESCRIPTION_SUMMARY: tree rings, ice cores, corals, and historical documents 

B)  

TITLE: Millennial Temperature Reconstructions: Southern Hemisphere 

DESCRIPTION_SUMMARY: tree rings, ice cores, corals, and historical documents 

Mann, et al. 
16

  

TITLE: Northern Hemisphere Temperatures During the Past Millennium 

DESCRIPTION_SUMMARY: Proxies used include tree-rings, ice cores, corals, long historical 

records, and long instrumental data series. Extension over 1000 AD to 1399 AD of Mann, M.E., 

R.S. Bradley, and M.K. Hughes.  1998.  Global-Scale Temperature Patterns and Climate Forcing 

Over the Past Six Centuries.  Nature 392:779-787. 

Mann and Jones 
17

  

A)  

TITLE: 2,000 Year Hemispheric Multi-proxy Temperature Reconstructions: Global 

DESCRIPTION_SUMMARY: Tree-rings, historical records, lake sediments, ice cores, fossil 

shells, and boreholes. Decadally-resolved series. 

B)  

TITLE: 2,000 Year Hemispheric Multi-proxy Temperature Reconstructions: Northern 

Hemisphere 

DESCRIPTION_SUMMARY: Tree-rings, historical records, lake sediments, ice cores, fossil 

shells, and boreholes. Decadally-resolved series 

C)  

TITLE: 2,000 Year Hemispheric Multi-proxy Temperature Reconstructions: Southern 

Hemisphere 

DESCRIPTION_SUMMARY: Tree-rings, historical records, lake sediments, ice cores, fossil 

shells, and boreholes. Decadally-resolved series 
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Mann, et al. 
18

  

B)  

TITLE: 2,000 Year Hemispheric and Global Surface Temperature Reconstructions: Northern 

Hemisphere: Land and Ocean: Composite Plus Scale Method 

DESCRIPTION_SUMMARY: Proxies include tree-ring, marine sediment, speleothem, 

lacustrine, ice core, coral, and historical documentary series. Composite reconstruction formed by 

averaging all validated reconstruction scenarios for the given reconstruction method and spatial 

target.  Cf. page 13255 of original publication and Supporting Information Figures S5 and S6. 

D)  

TITLE: 2,000 Year Hemispheric and Global Surface Temperature Reconstructions: Southern 

Hemisphere: Land and Ocean: Composite Plus Scale Method 

CITATION: Mann, M.E., Z. Zhang, M.K. Hughes, R.S. Bradley, S.K. Miller, S. Rutherford, and 

F. Ni.  2008.  Proxy-based reconstructions of hemispheric and global surface temperature 

variations over the past two millennia.  Proceedings of the National Academy of Sciences 

105:13252-13257. DOI:10.1073/pnas.0805721105. 

F)  

TITLE: 2,000 Year Hemispheric and Global Surface Temperature Reconstructions: Global: Land 

and Ocean: Error-In-Variables Method 

DESCRIPTION_SUMMARY: Proxies include tree-ring, marine sediment, speleothem, 

lacustrine, ice core, coral, and historical documentary series. Error-In-Variables (EIV) based on 

RegEM algorithm. Composite reconstruction formed by averaging all validated reconstruction 

scenarios for the given reconstruction method and spatial target.  Cf. page 13255 of original 

publication and Supporting Information Figures S5 and S6. 

H)  

TITLE: 2,000 Year Hemispheric and Global Surface Temperature Reconstructions: Northern 

Hemisphere: Land and Ocean: Error-In-Variables Method 

DESCRIPTION_SUMMARY: Proxies include tree-ring, marine sediment, speleothem, 

lacustrine, ice core, coral, and historical documentary series. Error-In-Variables (EIV) based on 

RegEM algorithm. Composite reconstruction formed by averaging all validated reconstruction 

scenarios for the given reconstruction method and spatial target.  Cf. page 13255 of original 

publication and Supporting Information Figures S5 and S6. 

J)  

TITLE: 2,000 Year Hemispheric and Global Surface Temperature Reconstructions: Southern 

Hemishpere: Land and Ocean: Error-In-Variables Method 
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DESCRIPTION_SUMMARY: Proxies include tree-ring, marine sediment, speleothem, 

lacustrine, ice core, coral, and historical documentary series. Error-In-Variables (EIV) based on 

RegEM algorithm. Composite reconstruction formed by averaging all validated reconstruction 

scenarios for the given reconstruction method and spatial target.  Cf. page 13255 of original 

publication and Supporting Information Figures S5 and S6. 

Moberg, et al. 
19

  

TITLE: 2,000-Year Northern Hemisphere Temperature Reconstruction 

DESCRIPTION_SUMMARY: Reconstruction calculated by combining low-resolution proxies 

with tree-ring data, using a wavelet transform technique. 
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